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Nation processes in two dimensions II. Critical 
etrations and the mean size index 

M F Sykes, D S Gaunt and Maureen Glen 
Physics Department, King’s College, Strand, London WC2R 2LS, UK 

Received 3 July 1975, in final form 18 August 1975 

Abstract. New series data are examined for the mean cluster size for site and bond mixtures 
in two dimensions. The critical concentration for the site problem on the simple quadratic 
lattice is estimated asps = 0.593 +04IO2 and on the honeycomb lattice as pc = 0.698+@003. 
It is concluded that the data are reasonably consistent with the hypothesis that the mean 
cluster size S@) ‘5 C@, - p ) - ?  as p + ps  - with y a dimensional invariant, y = 2.43 + 0.03 in 
two dimensions. Estimates of the critical amplitude C are also given. 

la this paper we examine new series data for the mean cluster size for site and bond 
*in two dimensions. We have introduced the problem, and given the new data, 
aacompanion paper (Sykes and Glen 1976, to be referred to as I). In a preliminary 
matigation (Sykes er al 1973) it was concluded from an examination of the simple 
qaadratic lattice that the critical concentration did not correspond to the radius of 
mvergence of the series expansion for the mean cluster size ; we have found that the 
mconclusion holds for both site and bond mixtures on the triangular, simple quadratic 
tod honeycomb lattices and their corresponding matching lattices. Our objective is to 
“ a t e  the critical concentration for those problems for which it is not known exactly 
@dlobvestigate the hypothesis (Sykes and Essam 1964a) that the critical index for the 

cluster size is a dimensional invariant. Explicitly we investigate the hypothesis 
rhar 

Sb) = c ( p c  --PI.- y ,  P + P c -  (1.1) 

forhghtproblems : the site and bond problems on the triangular, simple quadratic and 
’ W ~ m b  lattices, abbreviated as T(s), T(B), SQ(S), SQ(B), HC(S), HC(B) and the site problem 
o‘*esbPle quadratic matching lattice and the honeycomb matching lattice, abbrevi- 
a t e d ~  sQM(s) and HCM(S) respectively. A detailed treatment of these matching lattices 
andthemotivation for their study is given by Sykes and Essam (1964b) and Essam (1972). 
Tbenitical concentration pc is known exactly for the four problems : 

ds) Pc = 3 
iQ(B) Pc = f 
dB) 
Hc(B) 

p c  = 2 sin (n/18) = 0.34729.. . 
p c  = 1 - 2 sin (n/l8) = 0.65270 . . .. 
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The critical concentrations for the matching pair S d S )  and SQM(S) are Complementaryand 
likewise for the matching pair HC(S) and HCM(S). 

aa 
extensive study of the data (see Gaunt and Guttmann 1974 for a review of extrapoh 
procedures in general); however we have found it very difficult to draw precise 
sions. We have therefore confined our present account to a brief summary of the S ~ U  

Pad6 approximant analysis which in our view is at least as good as any altemafrpt 
procedure. 

M F Sykes, D S Gaunt and M Glen 

Because of the relevance of the critical index y to theories of scaling we have 

2. Pad6 approximant analysis 

To study the expansions for S@) given in I (tables 2 and 3) we have followed the pr" 
described in detail by Gaunt and Guttmann (1974). On forming Pade approximants to 
the series for (d/dp) In S@) it is found that the number and location of singularities in& 
or on the circle Ipj = pc varies widely from problem to problem. However, in all casesit 
appears that the closest singularity is not at p c  but lies in the left half of the p plane. some- 
times on the real axis, sometimes in the complex plane. We omit the detailswhich dom 
appear especially significant. The essential point is that we are faced with the situarion 
of a strong physical singularity at pc which is dominated asymptotically by one or mm 
weak non-physical singularities closer to the origin. In such circumstances we should 
not anticipate the convergence of the approximants in the vicinity of p, to be rapid In 
practice we have found that convergence tends to be poorest for those problems for 
which the exact value of p ,  is unknown. The reason for this is not understood bur 
appears to be unrelated to the behaviour of the non-physical singularities which seem 
comparable for both site and bond problems. 

We give in tables I4several sequences of Dlog Pade estimates ofp, and y (given bytbe 
poles and residues respectively) for those problems for which pc  is known exactly. AI- 
though the last few estimates are reasonably close to the exact value of p c  in all casesib 
sequences all exhibit small irregularities with no definite trend (see Gaunt and Guttmm 
1974 for a discussion of this phenomenon). If for each problem the residues are plotid 
against the position of their corresponding poles the last few estimates are found to d e b  

quite accurately a single smooth curve irrespective of which of the three sequences i b  
come from. The residue which would be obtained if a pole were located exactly at p z a  

Table 1. Dlog Pad6 estimates of p. (and y )  for the honeycomb bond problem 

n [ n  - WI [ n h l  [n  i- Unl 

3 06478 (1.869) 0~6oOo (1.392) 0.5026 (0.567) 

5 06075 (1.523) 0.6218 (1.714) 06430 (2,104) 
6 0-5694 (1485)t 0,6489 (2.253) 0.6445 (2.136) 
7 0.6356 (1.915) 06439 (2.120) 0.6444 (2.134)ff 
8 0.6505 (2.337) 06657 (3.385) 0.6544 (2.500) 
9 06562 (2,605) 

4 06710 (2.025)i 0.5684 (1.104): none 

t Defect on positive axis. 
$ Defect on negative axis. 
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Table 2. Dlog Pade estimates of p E  (and y) for the simple quadratic bond problem. 
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n [n - l lnl  [n/nl [n + l lnl  
0.6124 (4.134) 0.1862 (0.020) 2 0.4082 (1.225) 

3 0.4564 (1384) 0.4686 (1.740) 0.4879 (2.087) 
04086 (2.736) 0.4941 (2.226) 4 0.4207 (1.750)t 

5 0.4820 (1.897) 0.4981 (2.352) 0.5206 (4.740)t 
6 0.5022 (2.518) 0.5012 (2473) 0.5036 (2.601) 
7 0.5020 (2.507)l 

~~ 

t Defect on positive axis. 
$Defect on negative axis. 

Table 3. Dlog Pad6 estimates of p s  (and y )  for the triangular bond problem. 

2 0.3074 (1.571) 0.3207 (1.767) 0.3430 (2.272)' 
3 none 0.3479 (2440) 0.3445 (2.316) 
4 0.3394 (2.121) 0.3459 (2.366)j 0.3435 (2.290)tf 
5 0.3521 (2.684) 

t Defect on positive axis. 
Defect on negative axis. 

Table 4. Dlog Pade estimates of pc  (and y)  for the triangular site problem. 

2 04082 (1.225) 0.6124 (4.134) 0.2131 (0.037) 
3 0.4622 (1.638) 0.4736 (1.788) 0.4837 (1.969) 
4 none 04384 (1.951)t 0.4960 (2.254) 
5 none 0,5007 (2.422) 0.4982 (2.323) 
6 04956 (2.219) 
7 04955 (2.215)T 0.4992 (2.368)// 

0.4965 (2.256) 04979 (2.314)1/ 

t Defect on positive axis, 
I1 Defect in complex plane. 

bermdoff from the plot and in this way we estimate 

Y = 2.434 k 0.009 HC(B) 

Y = 2.425 +O.O05 SQ(B) 

Y = 2.423 + 0.008 T(B) 

Y = 2.40 0.03 Tb). 
' e h e  uncertainty for the triangular site problem arises because there is only one 
"twithp pc and we are reluctant to attach much weight to it. 

For the remaining four problems, all site problems for which the pc are not known 
wy3 the Dlog Pade approximants yield sequences which are not particularly well 
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anverged and it is not possible to make precise estimates of p c  and 7. However if4 
make &e assumption (not unreasonable in view of (2.1)) that matching pairs have the 
m e  value of y then this value, and the critical concentrations will correspond tht 
intersection of the pole-residue plot of each problem with the pole-residue plot ofrhc 
matching problem on a complementary probability Scale. 

n e  resulting graphs for the honeycomb and simple quadratic matching win 
lattices are given in figures 1 and 2 respectively. Unfortunately the plots only intern 
after extrapolation, implying that all the usable estimates of p c  are below the true vdue 
for each lattice. Since the degree ofcurvature of the plots in the vicinity ofp, is not know 
extmpolation necessarily increases the uncertainties, particularly in the value of 3. 
Nevertheless we feel the figures justify the estimates : 

M F Sykes, D S Gaunt and M Glen 

4 2.0- .- 
VI 

& 

in reasonably good agreement with (2.1). Because of the apparent direction of 
curvature, estimates of the critical probability can be made more precisely, namely: 

p ,  = 0698 & 0003 KC(S) 

p ,  = 0593f0002 sQ(s) 

pc = 0302 0003 HCM(S) 

p c  = @407&0.002 SQM(S). 

Various methods of improving the estimates (2.3) have been tried but without s u m  
and accordingly we adopt them as our final estimates. Likewise we have been unable to 
improve on theestimates ofthe critical exponent 7, although ample supportative evidence 
hasbeen found. Forexample,evaluationofPadCapproximants to the(p,-p)(d/dp) In$!) 
series at p = p ,  gives estimates of y which are consistent with (2.1) and (2.2). The resulu, 
for the honeycomb bond problem are given in table 5 and are typical of those found for 

i 1 

i ', HU4 
\ 

4 * 
\ 
\ 

\ 
\ 

1.61 
0-67 0.69 0.71 0.73 

Positim of p i e  

F m  I .  Pole-residue plot for thesite problem on the honeycomb lattice (again9PlaDd* 
honeycomb matching lattice (against I -p ) .  ., [n/n]: A, [n- i/n]; 0, [n+ l/nl 
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F i e  2. Pole-residue plot for the site problem on the simple quadratic lattice (against p )  
and the simple quadratic matching lattice (against 1 - p ) .  a, [n/n]: A, [n- l/n] ; 0,  [n + l/nl. 

Table 5. Pade estimates of y for the honeycomb bond problem using the ( p ,  -p)(d/dp)ln S ( p )  
series and the exact value of p.. 

1 1.3054 
2 none 
3 1.9231 
4 14707t 
5 24854 
6 3.13421 
7 2.4539 
8 24310 
9 2.4358t 

1.6453 
1.908 1 
1.90647 
1.9112jl 
2.5986 
2.3135 
2.4236 
2.4279 

2.2245 
1.9223 
1.86647 
2.2062 
2.3587 
2.35581 
2.4349 
2.4096 

t Defect on positive axis. 
II Defect in complex plane. 

‘poblQS with exactly known pc. For the remaining problems the results are less 
m a s e h ~ S e  of the uncertainty in pc and somewhat poorer convergence but are in 
maccord with (2.2). 

(2.3) are close to, and certainly well within the uncertainties of the much 
tiahec, less precise, estimates of Sykes and Essam (1964a) based on shorter 
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sedes. From the estimates (2.1) and (2.2) it seems likely that y is lattice 
value around 
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= 2-43 +003. (24) 
AS is usual in problems of this kind the uncertainties are not strict error b u n k  
just represent asubjective assessment ofthe rate of convergence of the available numm 
&ta (see for example Gaunt and Guttmann 1974). The estimate (2.4) is only 2% 1- 
&an the earlier estimate of Sykes and Essam (1964a) although it lies just outside 
uncertainty limits. 

We have used the exact or best estimates of p ,  together with (2.4) to estimate the 
critical amplitudes C defined by (1.1). We have used two methods: the dculation of& 
residues at the pole close top, of the Padk approximants to the series for [S(p)]’” and&,, 
evaluation of the Pade approximants to the series for (P,-p)[S(p)]”Y at p = p , .  Resdh 
obtained by these methods are in excellent agreement leading to final estimates forcd 

0145 +0001 H W  

a134 f 0.001 sQ(B) (2.5) 

0084 & 0.001 f(B) 

0 1 4 0 + ~ 0 6  Has) 

0 147 _+ 0.003 WS) 
Q128+0.003 ‘F(S) (161 

a 104 + 0.006 SQM(S) 

0064+Q003 HCM(S). 

and 

The uncertainties in p ,  (where applicable) and in y each introduce additional uncertainties 
in C of the same order as those quoted in (2.5) and (2.6). For the bond problem thc 
amplitudes are Seen to decrease monotonically with increasing lattice coordination 
number. The same is probably true of the site problem and is within the range of Un- 
certainties for the honeycomb and simple quadratic lattices. Such behaviour is in 
agreement with the Bethe approximation (Fisher and Essam 1961). However unlike 
the Bethe approximation it does not seem that on a given lattice the amplitude forthe 
bond problem is always greater than for the corresponding site problem. 

3. Conclusions 

All the available series data have been found reasonably consistent with the hypothesis 
that the mean size index y is a dimensional invariant in two dimensions for both s i t e d  
bond problems. (The equivalence of y for these two problems then follows from Ibe 
argument of I, 0 3.) We have found it difficult to draw precise conclusions. The methods 
described in 1 could be used to add a further coefficient or two in all cases but we ha’‘ 
not thought this worthwhile because of the poor convergence already experienced. Our 
final estimateeof y = 2.43k0.03 is close to 2+ = 2.428.. . and we adopt this simple 
fraction as a convenient mnemonic to replace the earlier tentative value of 29 ofSYksaod 
Essam (1964). 
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