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pecolation processes in two dimensions II. Critical
acentrations and the mean size index

M F Sykes, D S Gaunt and Maureen Glen
Physics Department, King’s College, Strand, London WC2R 2LS, UK

Received 3 July 1975, in final form 18 August 1975

Abstract. New series data are examined for the mean cluster size for site and bond mixtures
in two dimensions. The critical concentration for the site problem on the simple quadratic
lattice is estimated as p, = 0-593 +0-002 and on the honeycomb lattice as p, = 0-698 - 0-003.
It is concluded that the data are reasonably consistent with the hypothesis that the mean
cluster size S(p) = C(p.—p)~" as p — p,— with y.a dimensional invariant, y = 2431003 in
two dimensions. Estimates of the critical amplitude C are also given.

1. Itroduction

Inthis paper we examine new series data for the mean cluster size for site and bond
mixtures in two dimensions. We have introduced the problem, and given the new data,
:mawmpanion paper (Sykes and Glen 1976, to be referred to as I). In a preliminary
awstigation (Sykes er al 1973) it was concluded from an examination of the simple
qadratic lattice that the critical concentration did not correspond to the radius of
wnvergence of the series expansion for the mean cluster size; we have found that the
samecorclusion holds for both site and bond mixtures on the triangular, simple quadratic
wdhoneycomb lattices and their corresponding matching lattices. Our objective is to
Stmate the s:ritical concentration for those problems for which it is not known exactly
adto investigate the hypothesis (Sykes and Essam 1964a) that the critical index fot the
mn cluster size is a dimensional invariant. Explicitly we investigate the hypothesis

8p) ~ Clp.—p) 7, p—pe— (1.1)

gﬂght prObleqls: the site‘and bond problems on the triangular, simple quadratic and
m?hyec:i:b lIamces, a‘pbrewatefi as T(s}, T(B), SQ(S), SQ(B), HC(S), HC(B) and the site problem
g SQLI: € quadratic matchmg lattice and tl}e honeycomb matching lattice, abbrevi-
aity 5) and HCM(S)'reSpeCtl.Vely. A detailed treatment of these matching lattices

“Iolivation for their study is given by Sykes and Essam (1964b) and Essam (1972).

fiical concentration p, is known exactly for the four problems:

T(S) 2% % ‘
() pe=%
M) p, = 2sin(n/18) = 034729... (12)

HC(B) p. = 1—2sin (n/18) = 0-65270. . ..
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The critical concentrations for the matching pair sQ(s) and sQM(s) are Complemenmry a
likewise for the matching pair HO(S) and HCM(S).

Because of the relevance of the critical index y to theories of scaling we have mag, a
extensive study of the data (see Gaunt and Guttmann 1974 for a review of extrapolatiog
procedures in general); however we have found it very difficult to draw precise concly.
sions. We have therefore confined our present account to a brief summary of the stangarg
Padé approximant analysis which in our view is at least as good as any alternay
procedure.

2. Padé approximant analysis

To study the expansions for S(p) given in I (tables 2 and 3) we have followed the procedur
described in detail by Gaunt and Guttmann (1974). On forming Padé approximantst
the series for (d/dp) In S(p) it is found that the number and location of singularities inside
or on the circle |p| = p, varies widely from problem to problem. However, in all cases.it
appears that the closest singularity is not at p. but lies in the left half of the p plane, some-
times on the real axis, sometimes in the complex plane. We omit the details which donat
appear especially significant. The essential point is that we are faced with the situation
of a strong physical singularity at p, which is dominated asymptotically by one or mor
weak non-physical singularities closer to the origin. In such circumstances we shoud
not anticipate the convergence of the approximants in the vicinity of p, to be rapid. In
practice we have found that convergence tends to be poorest for those problems for
which the exact value of p, is unknown. The reason for this is not understood but
appears to be unrelated to the behaviour of the non-physical singularities which seem
comparable for both site and bond problems.

We give in tables 14 several sequences of Dlog Padé estimates of p, and y (given bythe
poles and residues respectively) for those problems for which p, is known exactly. A
though the last few estimates are reasonably close to the exact value of p, in all cases. the
sequences all exhibit small irregularities with no definite trend (see Gaunt and Guttmane

1974 for a discussion of this phenomenon). If for each problem the residues are plotted
against the position of their corresponding poles the last few estimates are found to define
-quite accurately a single smooth curve irrespective of which of the three sequences they
come from. The residue which would be obtained if a pole were located exactly at p. a8

Table 1. Dlog Padé¢ estimates of p, (and ) for the honeycomb bond problem.

n [n—1/n) [n/n} [n+1/n]

3 0-6478 (1-869) 0-6000 (1-392) 0-5026 (0-567)
4 0-6710 (2:025)% 0-5684 (1-104) none

5 06075 (1.523) 06218 (1.714) 0-6430 (2-104)
6 0-5694 (1-485)F 0-6489 (2:253) 0-6445 (2-136)
7 0-6356 (1.915) 0-6439 (2-120) 0-6444 (2-134)¢F
8 0.6505 (2:337) 0-6657 (3-385) 0-6544 (2:500)
9 0-6562 (2-605)

1 Defect on positive axis.
1 Defect on negative axis.
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Table 2. Dlog Padé estimates of p. (and y) for the simple quadratic bond problem.

n {n—1/n} [n/n) {n+1/n)

2 04082 (1-225) 06124 (4134) 0-1862 (0-020)
3 04564 (1-584) 04686 (1:740) 04879 (2:087)
4 0-4207 (1-750)t 0-5086 (2-736) 04941 (2:226)
5 0-4820 (1-897) 0-4981 (2:352) 0-5206 (4-740)
6 05022 (2:518) 05012 (2473) 05036 (2-601)
7 0-5020 (2:507)

1 Defect on positive axis.
1 Defect on negative axis.

Table 3. Dlog Padé estimates of p, (and y) for the triangular bond problem.

n [n—1/n] [n/n} [n+1/n]

2 03074 (1-571) 03207 (1-767) 03430 2272)"
3 none 0-3479 (2-440) 0-3445 (2:316)

4 0-3394 (2:121) 03459 (2-366)% 03435 (2290)%1
5 03521 (2:684)

T Defect on positive axis.
1 Defect on negative axis.

Table 4. Diog Padé estimates of p_ (and v) for the triangular site problem.

n [n—1/n] [n/n] [n+1/n]
2 04082 (1-225) 06124 (4-134) 0-2131 (0-037)
3 0-4622 (1-638) 0-4736 (1-788) 0-4837 (1-969)
4 none 04384 (1.951)F 0-4960 (2:254)
5 none 0-5007 (2.422) 0.4982 (2-323)
6 0-4956 (2-219) 0-4965 (2-256) 0-4979 (2-314)|;
7 0-4955 (2:215)F 0-4992 (2-368)||

1 Defect on positive axis,
| Defect in complex plane.

b1ead off from the plot and in this way we estimate

7= 243410009 HC(B)
¥ = 2425+0.005 SQ(B)
¥ = 242340008 1(B) (2.1)
. ¥ = 2404003 1(s).
2 Jar . .
mei;unce"amty for the triangular site problem arises because there is only one
For thep > Pe a_nd we are reluctant to attach much weight to it.
cucty T®maining four problems, all site problems for which the p_ are not known

¢ Dlog Pad¢ approximants yield sequences which are not particularly well
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converged and it is not possible to make precise estimates of p. and y. However if we
make the assumption (not unreasonable in view of (2.1)) that matching pairs have the
same value of y then this value, and the critical concentrations will correspond 1o the
intersection of the pole-residue plot of each problem with the pole-residue plot of p,
matching problem on a complementary probability scale.

The resulting graphs for the honeycomb and simple quadratic matching pairs o
lattices are given in figures 1 and 2 respectively. Unfortunately the plots only interseq
after extrapolation, implying that all the usable estimates of p. are below the true vajy
for each lattice. Since the degree of curvature of the plots in the vicinity of p. is not knowy,
extrapolation necessarily increases the uncertainties, particularly in the value of 1
Nevertheless we feel the figures justify the estimates:

y = 241+004 HO(S), HCM(S)
7 = 2401006 SQfs), sQM(s)

in reasonably good agreement with (2.1). Because of the apparent direction of the
curvature, estimates of the critical probability can be made more precisely, namely:

(22

pe = 0-698 +0-003 HC(S)
pe = 0-302+0-003 HCM(s) o
pe = 0-593+0-002 SQ(S)

pe = 0:407 +0:002 SQM(S).

Various methods of improving the estimates (2.3) have been tried but without success
and accordingly we adopt them as our final estimates. Likewise we have been unableto
improve on the estimates of the critical exponent y, although ample supportative evidence
hasbeenfound. Forexample,evaluation of Padé approximantsto the{(p.— p)(d/dp) in Sip)
series at p = p, gives estimates of y which are consistent with (2.1} and (2.2). The results
for the honeycomb bond problem are given in table 5 and are typical of those found for
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Figure 1. Pole-residue plot for the site problem on the honeycomb lattice (against p) and ¥
honeycomb matching lattice (against 1 —p). m, (n/n]: &, [n—1/n]; @, [n+1/n}
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Figure 2. Pole-residue plot for the site problem on the simiple quadratic lattice (against p)
and the simple quadratic matching lattice (against 1 —p). M, [n/n]: A,[n—1/n]; @, [n+1/n].

Table S. Padé estimates of y for the honeycomb bond problem using the (p. — p){(d/dp)ln 5(p)
series and the exact value of p,. ' ’

n [n—1/n] (n/n] [n+1/n]

1 1.3054 16453 2.2245

2 none 1.9081 1.9223

3 1.9231 1-9064+ 1-8664+

4 1-8707¢ 19112} 22062
5 2.8854 2.5986 2.3587

6 3.1342¢ 2.3735 2-3558t

7 24539 2:4236 24349

8 24310 24279 2-4096

9 2-4358%

1 Defect on positive axis.
| Defect in complex plane.

e .
Problems with exactly known p.. For the remaining problems the results are less
use of the uncertainty in p, and somewhat poorer convergence but are in
B accord with (2.2) P :
e, Etlmates 2.3) are close to, and certainly well within the uncertainties of the much
ough less precise, estimates of Sykes and Essam (1964a) based on shorter
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series. From the estimates (2.1)and (2.2) it seems likely that y is lattice independent wig,
value around

y = 2:43+0.03. 2

As is usual in problems of this kind the uncertainties are not strict error bounds, bt
just represent a subjective assessment of the rate of convergence of the available numericy
data (see for example Gaunt and Guttmann 1974). The estimate (2.4) is only 2% Jarger
than the earlier estimate of Sykes and Essam (1964a) although it lies just outside they
uncertainty limits.

We have used the exact or best estimates of p, together with (2.4) to estimate the
critical amplitudes C defined by (1.1). We have used two methods : the calculation of the
residues at the pole close to p, of the Padé approximants to the series for [S(p)]'/" andalg
evaluation of the Padé approximants to the series for (p.—p)[S(p)]'”” at p = p_. Resulis
obtained by these methods are in excellent agreement leading to final estimates for C of

0-145+0.001 HC(B)
0-134 + 0001 sQ(B) 2
0-084 +0-001 T(B)
and

0-140 4+ 0-006 HC(S)

014740003  sofs)

0-128 +0-003 1(s) 26)
0-104 £ 0-006 sQM(s)

0-064 £ 0-003 HCM(S).

The uncertainties in p, (where applicable) and in y each introduce additional uncertainties
in C of the same order as those quoted in (2.5) and (2.6). For the bond problem the
amplitudes are seen to decrease monotonically with increasing lattice coordination
number. The same is probably true of the site problem and is within the range of u-
certainties for the honeycomb and simple quadratic lattices. Such behaviour is it
agreement with the Bethe approximation (Fisher and Essam 1961). However uniike
the Bethe approximation it does not seem that on a given lattice the amplitude for ti¢
bond problem is always greater than for the corresponding site problem.

3. Conclusions

All the available series data have been found reasonably consistent with the hypothesis
that the mean size index y is a dimensional invariant in two dimensions for both site
bond problems. (The equivalence of y for these two problems then follows from (¢
argument of 1, § 3.) We have found it difficult to draw precise conclusions. The methods
described in I could be used to add a further coefficient or two in all cases but we hawe
not thought this worthwhile because of the poor convergence already experienced.
final estimate-of y = 2434003 is close to 23 = 2.428 ... and we adopt this simp¥

fraction as a convenient mnemonic to replace the earlier tentative value of 2 of Sykes
Essam (1964a).



Percolation processes in two dimensions II 103

yiwovledgment

ﬁmearch has been supported by a grant from the Science Research Council.

Jrierences
Bag) W1972 Phase Transitions and Critical Phenomena, vol 2 eds C Domb and M S Green (New York:

Academic Press) pp 197-270
ferM Eand Essam J W 1961 J. Math. Phys. 2 609-19
et DS and Guttmann A J 1974 Phase Transitions and Critical Phenomena, vol 3 eds € Domband M S
Green (New York: Academic Press) pp 181-243
MFand Essam J W 1964a Phys. Rev. 133 A310-15
—1964b J. Math. Phys. 8 1117-27
ssMFand Glen M 1976 J. Phys. A: Math. Gen. 9 87-95
S MF, Martin J L and Essam J W 1973 J. Phys. A: Math., Nucl. Gen. 6 1306-9



